

The economical splitting of water ...

... into the fuel H_2 and the by-product O_2 requires inexpensive catalysts that operate in aqueous solution and in the presence of O_2 . In their Communication on page 9381 ff., E. Reisner et al. show that a synthetic cobalt catalyst evolves H_2 electro- and photocatalytically under the highly demanding conditions of pH-neutral water and under atmospheric O_2 . The picture shows the preference of the cobalt catalyst for aqueous protons, and the evolution of H_2 bubbles upon irradiation with visible light in air.

